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ABSTRACT

Motivation: In this article, we develop a novel edge-based network

i.e. edge-network, to detect early signals of diseases by identifying the

corresponding edge-biomarkers with their dynamical network bio-

marker score from dynamical network biomarkers. Specifically, we

derive an edge-network based on the second-order statistics repre-

sentation of gene expression profiles, which is able to accurately rep-

resent the stochastic dynamics of the original biological system (with

Gaussian distribution assumption) by combining with the traditional

node-network, which is based only on the first-order statistics repre-

sentation of the noisy data. In other words, we show that the stochas-

tic network of a biological system can be described by the integration

of its node-network and its edge-network in an accurate manner.

Results: By applying edge-network analysis to gene expressions of

healthy adults within live influenza experiment sampling at time points

before the appearance of infection symptoms, we identified the edge-

biomarkers (80 edges with 22 densely connected genes) discovered in

edge-networks corresponding to symptomatic adults, which were

used to predict the subsequent outcomes of influenza infection. In

particular, we not only correctly predict the final infection outcome

of each individual at an early time point before his/her clinic symptom

but also reveal the key molecules during the disease progression. The

prediction accuracy achieves �90% under the leave-one-out cross-

validation. Furthermore, we demonstrate the superiority of our method

on disease classification and predication by comparing with the con-

ventional node-biomarkers. Our edge-network analysis not only opens

a new way to understand pathogenesis at a network level due to the

new representation for a stochastic network, but also provides a

powerful tool to make the early diagnosis of diseases.
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1 INTRODUCTION

Time-course data are increasingly used to study dynamical biolo-

gical processes or disease progression, like drug treatment or virus
infection that evolves in a stochastic and temporal fashion (Wu
andWu, 2013). Instead of a snapshot of gene expression, the time-

course gene expression over several continuous time points, allows

investigators to study or even predict dynamic behaviors of a bio-

logical system (Huang et al., 2011; Wu and Wu, 2013). Based on

high-throughput time-course data, although there are extensive

works to identify molecular biomarkers for diagnosing complex

diseases, it is strongly demanded to develop a systematical frame-

work by exploiting such dynamical and stochastic information to

predict early signals of disease states and also their occurrence

times from both theoretical and computational viewpoint,

which is also crucial to achieve predictive and preventive medicine

(Liu et al., 2013a, b). In particular, molecular network is widely

used to analyze the molecular response (Oates and Mukherjee,

2012; Zhi et al., 2013) as well as biomarkers for distinguishing

disease and normal samples. Traditionally, a molecular network

with node (e.g. gene or protein) as basic element, i.e. node-

network, is constructed mainly in the following two ways: one is

to extract the conditional existence of known molecular inter-

actions, which consist of a subnetwork induced from a given

background network (Chuang et al., 2007), such as Weighted

Correlation Network Analysis (Zhang and Horvath, 2005); the

other is to directly infer de novo molecular associations, which

represent a significant topological structure connecting

molecules (He et al., 2012; Margolin et al., 2006; Zhang et al.,

2012), such as ARACNE (Margolin et al., 2006), InferGRN

(Wang et al., 2006) and NARROMI (Zhang et al., 2013). This

network can represent associations or interactions among mol-

ecules but cannot directly describe the stochastic dynamics of a

biological system.
Generally, a biological system at a molecular level can be

described by stochastic dynamics modeled by a master equation

(Chen et al., 2010; Van Kampen, 1992). As shown in Figure 1,

with the linearization and Gaussian distribution assumption, the

system can be exactly expressed by two sets of equations, i.e. one

for the mean vector of molecules (used in first-order statistics

representation) and another for the covariance matrix of mol-

ecules (used in second-order statistics representation). However,

the traditional molecular network, e.g. gene network or protein

interaction network, is based only on the equations of mean

vector rather than the equations of covariance matrix, e.g. a

set of linear equations for molecular concentrations, which

cannot represent whole stochastic dynamics of the original

system (i.e. it is the representation of a biological system without

any stochastic fluctuation or with zero noise). Different from*To whom correspondence should be addressed.
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those conventional node-networks, we propose a new edge-based

network, i.e. edge-network, to exploit higher-order statistics in-

formation among molecules, where a node represents a pair of

the connecting nodes, i.e. an edge in the traditional node-

network. As indicated in Figure 1, the edge-network is based

on the covariance matrix of molecules governed by Lyapunov

differential equation (Ichikawa et al., 2009). In an edge-network,

a node is not a molecule but a pair of molecules (i.e. an edge),

and a link represents the relationship between two molecule pairs

(i.e. between two edges) rather than between two molecules as in

a node-network. Clearly, an edge-network reflects the second-

order statistics information, and therefore theoretically with

Gaussian distribution assumption on each molecule’ expression

it is able to recover stochastic dynamics of the original biological

system by combining with the node-network (first-order

statistics).
Recent studies (Chen et al., 2012; Li et al., 2013; Liu et al.,

2012, 2013a) show that the second-order statistics information

can be used to predict the predisease state (the state of an indi-

vidual before the appearance of clinical symptom) and thus

achieve the early diagnosis of a disease by detecting its dynamical

network biomarker (DNB), in contrast to the molecular network

that is mainly used to identify molecular biomarkers or node-

biomarkers for the diagnosis of a disease. Thus, one major ad-

vantage of the edge-network is its predictive power for early
diagnosis of a disease, which can not only predict the future

occurrence of a disease but also estimate the critical time when

the change from a normal to a disease state happens. As shown

in Figure 2A, the progression of the disease progression,
e.g. influenza infection can be considered to have three stages

(or states), i.e. (i) normal stage possibly with the gradual pro-

gression of the disease, (ii) predisease stage that is considered as

the limit of the normal stage just before the disease symp-
tom appears and (iii) disease or infection stage after the disease

symptom appears (Chen et al., 2012; Liu et al., 2012, 2013a).

Our edge-biomarkers derived from the edge-network are able

Fig. 2. Disease progression, DNBs and time-course gene expression pro-

files of 17 healthy adults within live influenza experiment. (A) The pro-

gression of the influenza infection can be considered to have three stages,

i.e. (i) normal stage with the gradual progression of the disease, (ii) pre-

disease stage that is considered as the limit of the normal stage just before

the symptom appears and (iii) disease or infection stage after the symp-

tom appears. (B) Edge-biomarkers or DNBs are able to identify the

predisease stage due to dynamical and higher-order statistics information,

and therefore predict the outcome of the influenza infection before the

symptom appears. (C) The biological time-course expression data con-

tains 17 subjects challenged with influenza H3N2/Wisconsin, for which, 9

subjects are infected (Sx), whereas 8 subjects stay healthy (Asx) finally.

Gene expression profiles were obtained and measured on whole periph-

eral blood drawn from all subjects at an interval of 8 h post inoculation

(hpi) through 108 hpi. In all, 268 gene microarrays were obtained for all

subjects at 16 time points including baseline (�24 hpi). For the purpose of

the prediction, we only use the data with non-symptom to identify the

edge-biomarkers

Fig. 1. Node-network and edge-network for a biological system. A bio-

logical system at a molecular level can be modeled as a master equation,

where P is the probability of x; W is the propensity function; x is the

numbers or concentrations of molecules following Gaussian distribution

with a mean vector � and a covariance matrix � and s is the changes of

molecules. By liberalizing the master equation, we have two sets of the

equations, i.e. one is linear equations corresponding to the traditional

molecular network or node-network, which is based only on the first-

order statistics information or average values of molecules, and another is

Lyapunov differential equations corresponding to our edge-network,

which is based on the second-order statistics information or covariance

between molecules. Theoretically, the information from those two-level

statistics can fully recover the stochastic dynamics of the original system.

The first-order statistics information or traditional node-network is used

to distinguish the disease and normal samples for disease diagnosis by

identifying molecular biomarkers or node biomarkers, whereas the

second-order statistics information or edge-network is able to distinguish

the predisease and normal samples by identifying edge biomarkers or

DNBs, thereby achieving the early diagnosis or the prediction of the

disease
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to identify the predisease stage due to its dynamical and add-

itional covariance information, and therefore predict the out-

come of the complex disease (e.g. influenza infection) before

the clinic symptom appears (Fig. 2B).
Specifically, by applying edge-network analysis to 268 gene

expression profiles of 17 healthy adults within 16 time points

across the whole live influenza experiment (Huang et al., 2011),

we discovered 80 edges (with 22 densely connected genes)

involved in edge-networks of most symptomatic adults before

the appearance of clinic symptom, which were used as edge-

biomarkers to predict the subsequent outcomes of influenza

infection for each individual. Our results indicated that those

edge-biomarkers in this case have similar dynamical features to

DNB (Chen et al., 2012; Liu et al., 2012, 2013a, 2013b). In par-

ticular, the results show that these edge-biomarkers can predict

the outcomes of influenza infection with 90% accuracy under

leave-one-out cross-validation (LOOCV), i.e. not only predict

the final infection outcome of each individual or subject but

also estimate the early time point of the subsequent infection.

Furthermore, we compare the results with the conventional bio-

markers and methods, and also conduct the functional analysis

on the edge-biomarkers, which all demonstrate the superiority of

our method on disease classification and prediction. We also

investigate the molecular mechanism of the disease development

after virus infection by analyzing the identified key molecules at

the critical time points. In all, our edge-network analysis opens a

new way to deeply understand disease progression, e.g. influenza

virus-induced pathogenesis from dynamical features and higher-

order statistics information of big biological data, and also pro-

vides a powerful tool to prevent disease occurrence or make the

early diagnosis of a disease for each individual.

2 METHODS

We first describe the biological data used to study influenza infection;

then provide the mathematical basis of edge-network; next display our

computational method of edge-network analysis shown in Figures 1 and

2; finally illustrate the prediction results as well as the comparison

between our edge-network and traditional node-network (i.e. molecular

network). Note that an edge in this article means a pair of two connecting

molecules.

2.1 Experimental data

The biological data GSE30550 (Huang et al., 2011) contains 17 subjects

(or adults) challenged with influenza H3N2/Wisconsin, for which, 9 sub-

jects are actually infected (with the clinical infection symptom), whereas 8

subjects stay healthy (without the clinical infection symptom) finally.

Gene expression profiles were obtained and measured on whole periph-

eral blood drawn from all subjects at an interval of 8 h post-inoculation

(hpi) through 108 hpi. Totally, 268 gene microarrays were obtained for all

subjects at 16 time points including baseline (24 h before subjects were

injected with influenza virus, e.g. �24 hpi) (Huang et al., 2011). Because

our method is designed for predicting the influenza infection, we only use

the predisease gene expression data (i.e. the time-course data before the

appearance of clinical symptom of influenza infection or the data shown

as Non-symptom in Fig. 2C) instead of the whole gene expression profiles

(i.e. the data before and after the symptom appearance). Because there is

no baseline information for subject-13, we did not take account of the

baseline data of any subject. As shown in Figure 2C, we chose the

predisease gene expression data for 17 subjects according to the clinical

index provided in original article (Huang et al., 2011). We divided sub-

jects into two groups according to the clinical symptom chart based on

the standardized symptom scoring (Dowling et al., 1958): symptomatic

(Sx) group with 9 subjects (subjects 1,5,6,7,8,10,12,13,15) and asymptom-

atic (Asx) group with 8 subjects (subjects 2,3,4,9,11,14,16,17).

(1) For symptomatic group, the lengths of used expression data for the

predisease periods are different due to the different clinical outcomes of

these pathogen subjects. For subjects 1, 5, 6 and 7, we all used the data

before 39h when they were diagnosed to have virus infection. Similarly,

for subjects 8, 10, 12, 13 and 15, the data obtained before 62, 74, 86, 98

and 98 h were used, respectively.

(2) For asymptomatic group, we used the data before 39h, i.e. the first

six time points without baseline point, although we can use more data.

This is because we expect to get the accurate prediction of influenza

infection by our method at the earliest time before a medical doctor

can give the clinical diagnostic results.

2.2 Theoretical basis of edge-network

A biological system at a molecular level can generally be described by

stochastic dynamics, which can be modeled by a master equation (Chen

et al., 2010; Van Kampen, 1992), i.e. Equation (1).

dPðxðtÞ, tÞ

dt
¼
Xm

j¼1
½WjðxðtÞ � sjÞPðxðtÞ � sj, tÞ �WjðxðtÞÞPðxðtÞ, tÞ� ð1Þ

where the system is composed of n molecular species x¼ (x1 , . . . ,xn) and

m reactions, and P(x,t) is the time evolution of the probability in state x

at time t. sij is the change of xi by the reaction-j with sj¼ (s1j , . . . ,snj), and

Wj is the propensity function, which is the transition probability. Note

that xi is the number of molecule-i. As shown in Figure 1, with the lin-

earization and Gaussian distribution assumption of Equation (1), the

biological system can be exactly expressed by two sets of equations

(Ichikawa et al., 2009), i.e. Equation (2) for the mean vector of molecules

(or the first-order statistics information) and Equation (3) for the covari-

ance matrix of molecules (or the second-order statistics information)

(Ichikawa et al., 2009).

Node�network dynamics :
d�ðtÞ

dt
¼ AðtÞ�ðtÞ ð2Þ

Edge�networkdynamics :
d�ðtÞ

dt
¼ AðtÞ�ðtÞ þ �ðtÞA

0

ðtÞ þDðtÞ ð3Þ

where � is the mean vector of x, and � is an n� n covariance matrix of x.

Clearly, Equation (2) is linear differential equations and represents the

traditional molecular network (e.g. gene network or protein interaction

network) or so-called node-network, where A is the network connection

matrix or adjacent matrix and a node is a molecule (i.e. �i), which is

based only on first-order statistics information. A’ is the transpose of A.

On the other hand, Equation (3) is the Lyapunov differential equations,

which are based on the second-order statistics information. It constructs

the covariance network or edge-network, where a node is a pair of mol-

ecules (i.e. �ij) in contrast to a molecule in a node-network, and a link in

an edge-network describes the relationships between two molecule pairs

in contrast to two molecules in a node-network. Clearly, Equations (2

and 3) can fully recover the stochastic dynamics of the biological system

with an appropriate assumption (Ichikawa et al., 2009). For instance, by

simulating Equations (2 and 3), we can obtain stochastic dynamics of

the original biological system Equation (1). Also Equations (2 and 3)

are independent of each other in the form, i.e. node-network and edge-

network can be analyzed separately. Although the adjacent matrix of the

edge-network can be obtained by using the elements of A shown in

Equation (3), it can be also numerically inferred by the covariance

matrix introduced in Equation (5) belows.

A node-network (traditional molecular network with node �i or xi) or

adjacent matrix A in Equation (2) is generally inferred by analyzing the
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correlations of molecules based on expression data. On the other hand, in

theory, the edge-network (with node �ij) can also be directly constructed

from high-throughput data based on its definition and correlations.

Specifically, the links of an edge-network could be approximately inferred

by using the corresponding correlations between molecule pairs.

Generally, a link in an edge-network is a fourth-order statistics (or the

fourth-order moment) due to its relationship between two molecule pairs.

The Pearson correlation coefficient (PCC) is a second-order statistics,

which reflects the relationship between two molecules, i.e.

PCCðxi,xjÞ ¼
Cðxi, xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxiÞVðxjÞ

p ¼
Eððxi � �iÞðxj � �jÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðxi � �iÞ

2Eðxj � �jÞ
2

q ð4Þ

which is the basis of many methods to construct the traditional node-

network. On the other hand, for four molecules, i.e. two molecule pairs,

we define the similar measurement as follows:

PCCðxi, xj,xk, xlÞ ¼
Cðxi, xj,xk, xlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðxiÞVðxjÞVðxkÞVðxlÞ
4
p

¼
Eððxi � �iÞðxj � �jÞðxk � �jÞðxl � �lÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðxi � �iÞ
4Eðxj � �jÞ

4Eðxk � �kÞ
4Eðxl � �lÞ

44

q

According to Isserlis’ theorem, we have

Eððxi � �iÞðxj � �jÞðxk � �kÞðxl � �lÞÞ

¼ Eððxi � �iÞðxj � �jÞÞEððxk � �kÞðxl � �lÞÞ

þ Eððxi � �iÞðxk � �kÞÞEððxj � �jÞðxl � �lÞÞ

þ Eððxi � �iÞðxl � �lÞÞEððxj � �jÞðxk � �kÞÞ

¼ Cðxi,xjÞCðxk, xlÞ þ Cðxi,xkÞCðxj,xlÞ þ Cðxi, xlÞCðxj, xkÞ

Because of Eðxi � �iÞ
4
¼ 3VðxiÞ

2, then the fourth-order correlation coef-

ficient is

PCCðxi, xj, xk, xlÞ

¼
Cðxi, xjÞCðxk,xlÞ þ Cðxi,xkÞCðxj, xlÞ þ Cðxi,xlÞCðxj,xkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðxiÞVðxjÞVðxkÞVðxlÞ
3
p ð5Þ

where Cðxi,xjÞ ¼ Eððxi � �iÞðxj � �jÞÞ and VðxiÞ ¼ Eðxi � �iÞ
2. Clearly,

we can calculate the correlation between two molecule pairs i.e. xi� xj
and xk�xl from biological data based on the aforementioned Equation

(5) provided that there are time-course data or multisample data, and

then, we can construct the network of molecule pairs, e.g. edge-network,

by Equation (5).

2.3 Computational algorithm of edge-network analysis

Based on the aforementioned theoretical basis, we carried edge-network

analysis on the biological data GSE30550 downloaded from NCBI GEO.

To predict live influenza infection, the edge-network analysis includes

several steps as below.

(0) In the preprocess of original data, we choose 1188 and 2909 genes,

respectively, for two groups of subjects (or individuals) by using fold

change selection (1.2 for asymptomatic and 1.3 for symptomatic in this

study). In details, for each subject, his/her differentially expressed genes

(DEGs) include those genes selected at different time points, and the

DEGs at a given time point are genes whose expression fold change

(the ratio between expressions at this time and the first time) larger

than the aforementioned threshold. Then, the DEGs of subjects from

the same group (Sx or Asx) are united together. Note that, these thresh-

olds are determined by the change of gene number with the fold-change

value (Supplementary Fig. S1A and B), so that genes are chosen as many

as possible before the number of genes exceeds an half of all genes.

(1) Now, we use PCC to construct co-expression networks (a form of

node-network) for 9 Sx subjects, respectively. The correlations of any

gene pair (i.e. edge in node-network, or correlation of any two genes)

are different in nine networks and they form a nine dimension vector by

Equation (4). If the absolute mean value of such correlation vector is40.8

and its standard deviation value50.1 (Supplementary Fig. S1C), we select

this gene pair. When this threshold is40.1, the number of the selected

edges increases rapidly, and thus we determine these standard deviation

thresholds by the effect of edge filtering (Supplementary Fig. S1C). In

such a way, we ensure that the selected gene pairs/edges are consistently

significant in nine networks, and they will be used to construct the edge-

network in following steps. Different from a general node-network, these

pre-selected edges will be the background ‘nodes’ of the final edge-

networks. In other words, we actually choose the edges/gene pairs with

high correlations in all nine networks as the candidates of biomarkers,

which represent the common correlated gene associations among 9 Sx

subjects.

(2) Next, for each Sx subject, we carry out the fourth-order correlation

coefficient estimation for each edge pair (i.e. a pair of gene pairs) by

Equation (5). The threshold of absolute value of such correlation is set

as 0.97 (Supplementary Fig. S1D) to choose the meaningful association

between two edges (i.e. four molecules). The rule for this threshold selec-

tion is based on the ratio between number of the selected gene pairs and

number of all possible gene pairs (i.e. complete graph) under the same

number genes (Supplementary Fig. S1D), which is on purpose to keep the

scarcity of associations among genes. Note that, during this step, we only

compute the correlations between preselected edges from aforementioned

step; i.e. we just consider the edges/gene pairs that are consistently sig-

nificant in the original node-networks. In such a manner, we can reduce

the computation time and memory space drastically. Then, we will get

nine edge-networks for Sx subjects correspondingly, and those edges

(i.e. molecule pairs) presenting in at least seven Sx edge-networks are

thought to be closely related to disease development as the edge-

biomarkers of Sx group.

(3) As the same as the construction method of edge-networks for 9 Sx

subjects, we can also build edge-networks for 8 Asx subjects, respectively.

The thresholds used to construct Asx edge-networks are the same as

above values used in the construction of Sx edge-networks. Finally, the

edge-biomarkers of Asx group as the selected common edges are in at

least 5 Asx edge-networks, i.e. from more than a half of the Asx subjects

due to the indistinctive common edges in Asx group.

(4) Actually, we can use the differential gene pairs of two groups

(i.e. differential edge relations in Sx subjects and Asx subjects) as novel

edge-biomarkers to distinguish symptomatic (Sx) and asymptomatic

(Asx) groups with influenza infection. For example, the correlation

values of edges in these edge-biomarkers by Equation (4) can be used

for hierarchical clustering. To compare the contribution of these edge-

biomarkers from differential analysis, we also examine the edge-

biomarkers induced from two groups (Sx and Asx), respectively.

(5) Furthermore, a criterion Equation (6) based on DNB is used to

indicate a sudden deterioration before the disease. This composite criter-

ion for DNB in the predisease state is defined by combining three con-

ditions (Chen et al., 2012; Liu et al., 2012; 2013b):

CI ¼:
SDd � PCCd

PCCo
ð6Þ

where PCCd is the average PCC of the expressions of genes in the dom-

inant group or DNB (e.g. a group of marker genes) in absolute value;

PCCo is the average PCC between the expressions of the dominant group

genes and other genes in absolute value; and SDd is the average standard

deviation of the expressions of the dominant group genes (Chen et al.,

2012; Liu et al., 2012, 2013b). This criterion can also be applied to quan-

tify our edge-biomarkers and used to reflect molecular network rewiring

before disease occurrence. Actually, from the biological viewpoint, the

selected edge-biomarkers can be used to predict influenza infection. This

is because there is also a critical transition from virus infection to disease,

which can be indicated by the DNB score of edge-biomarkers. In this

study, the dominant group is the molecules or genes of edge-biomarkers
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from Sx group (22 genes related to disease) and others (not in dominant

group) are the genes for studying Sx and Asx, respectively, i.e. the union

of 1188 and 2909 genes. To calculate such a criterion, we predefine the

time window for expression correlation calculation. The window length is

five time points, i.e. he DNB score including expression data during any

consecutive five time points. Thus, each Sx or Asx subject has 11 time

windows and the corresponding DNB scores to represent his/her diag-

nostic score over time. When DNB score becomes significantly larger

than a given prediction threshold, this time window will be regarded as

the early warning point/period of the disease. By using DNB score quan-

tifying edge-biomarkers to predict influenza infection in practice, the

Receiver-Operating Characteristic curve (ROC) can be drawn along

with the change of the prediction threshold from 0 to 3 with interval

as 0.01, and the corresponding Area Under ROC Curve (AUC) should

be used to evaluate the accuracy of such prediction.

(6) Finally, to confirm the robustness of our edge-biomarkers and

avoid overfitting, the LOOCV is applied for Sx subjects (our discrimina-

tive edge-biomarkers are finally selected not from Asx subjects but from

Sx subjects, so that, LOOCV only removes Sx subjects one by one). In

detail, we rerun above edge-network analysis nine times. In each time, an

Sx subject is kept and other eight subjects are used to infer the edge-

network biomarkers. Then these biomarkers are used to predict that the

remaining Sx subject and other Asx subjects. After nine times, all the

prediction results based on the threshold change of edge-biomarkers are

summarized to draw ROC and calculate AUC.

Therefore, by implementing the aforementioned algorithm, we actually

have following conclusions: (i) for each Sx subject, the early warning

signal of the symptom was found before clinical diagnosis; (ii) for each

Sx subject, the critical time point was detected; and (iii) the edge-

biomarkers are significantly related to the disease progression and

development (e.g. virus infection).

3 RESULTS

Although there already have many elegant experiments of the

study of host response to invading pathogens (Fenner et al.,

2006; Ichinohe et al., 2009; Proud et al., 2008; Ryo et al., 2008;
Zhu et al., 2008), how to predict the outcome of the influenza

infection from the observed data before the appearance of dis-

ease symptom and what are the key molecules to result in the
transition from a healthy state to a disease state still remain un-

clear. Thus, we carried edge-network analysis on the biological

data GSE30550 downloaded from NCBI GEO, which tried to
predict live influenza infection.

3.1 Edge-networks from non-symptom or predisease

expression data can distinguish influenza symptomatic

(Sx) and asymptomatic (Asx) subjects

(1) The gene composition in different edge-biomarkers. Figure 2C

shows the time-course gene expression profiles and clinical data
of 17 healthy adults within live influenza experiment (Huang

et al., 2011), for which 8 adults have non-symptom, i.e. asymp-

tomatic (Asx) during whole period, whereas 9 adults have the
symptom, i.e. symptomatic (Sx) after the virus infection but at

different time points. By analyzing these expression profiles

(Huang et al., 2011), we constructed the corresponding 17
edge-networks based on the computational algorithm of edge-

network analysis (see Section 2), and further identified

edge-biomarkers as well as the DNB scores during infection of
influenza A. Specifically, these two groups of edge-networks

were constructed from the non-symptom (i.e. predisease state

before the infection symptom appears) gene expression data cor-

responding to 9 symptomatic (Sx) and 8 asymptomatic (Asx)

adults, respectively, and two sets of common genes (or gene

pairs) were further extracted from respective symptomatic and

asymptomatic edge-networks (Supplementary Tables S1 and S2).

Note that for the purpose of infection prediction, we only use the

data with non-symptom for Sx subjects and with non-symptom

period for Asx subjects in Figure 2C to identify the edge-

biomarkers. We have found 80 edges with 22 common genes

(IFI44, IFI44L, DDX58, GBP1, TDRD7, IFI35, IFIT2,

IFIT1, IFIT3, MX1, OAS1, OAS2, OAS3, LAP3, HERC5,

PLSCR1, EIF2AK2, IFIH1, SERPING1, OASL, RSAD2 and

ISG15) appearing in many symptomatic edge-networks (corres-

ponding to nine symptomatic subjects), which are totally differ-

ent from 34 edges with 41 genes commonly observed in the eight

asymptomatic edge-networks. These results provide obvious evi-

dence that different networks or edges observed before the symp-

tom appearance lead to divergent disease outcomes after virus

infection, thereby implying that they can be used to predict the

disease outcomes.

(2) The biological function and disease relevance of edge-

biomarkers. We also analyzed the functional enrichment of 22

common genes for Sx (Supplementary Table S3). The enriched

pathways are consistent with our expectations. A total of 8 of 22

genes (DDX58, MX1, OAS1, OAS2, OAS3, EIF2AK2, IFIH1

and RASD2) are observed in Influenza A pathway

(Supplementary Fig. S2), and 7 genes (DDX58, MX1, OAS1,

OAS2, OAS3, EIF2AK2 and IFIH1) are also in Measles path-

way, which possibly share the similar influence on interferon-

alpha signaling pathway as influenza infection. In addition,

another three significantly enriched pathways include hepatitis

C with 6 genes (DDX58, IFIT1, OAS1, OAS2, OAS3 and

EIF2AK2), herpes simplex infection with 7 genes (DDX58,

IFIT1, OAS1, OAS2, OAS3, EIF2AK2 and IFIH1) and RIG-

I-like receptor signaling pathway with 3 genes (DDX58, IFIH1

and ISG15). Particularity, MX1 [myxovirus (influenza virus) re-

sistance 1, interferon-inducible protein p78 (mouse)] is an im-

portant gene associated with influenza infection (Engelhardt

et al., 2004; Garber et al., 1991; Salomon et al., 2007) and it is

also relevant with infection of hepatitis C (Knapp et al., 2003).

Furthermore, other genes undiscovered in influenza A pathway

or other pathways are also tightly related to influenza according

to their reported roles in biological functions and pathogen

mechanisms. For example, IFI44, IFI44L, GBP1, IFI35,

IFIT2, IFIT3 and HERC5 are all interferon-induced proteins.

It has been reported that ISG15 conjugation inhibits influenza A

virus gene expression and replication and targets on the viral

NS1 protein in virus-infected cells (Hsiang et al., 2009; Zhao

et al., 2010). HERC5 is found to attenuate influenza A virus

by catalyzing ISGylation of viral NS1 protein (Tang et al.,

2010). In contrast, 41 genes obtained from Asx show nothing

significant with the influenza in pathway enrichment analysis,

and they even did not contain well-known genes related to dis-

eases. Thus, the identified genes in edge-biomarkers are reason-

ably explained on the biological functions and networks

corresponding to the divergent outcomes of two different subject

groups. Note that, the edge-biomarkers indicate the new roles

(associations) of genes (which can be used for disease
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classification and prediction), although many genes are already
known as disease genes.
(3) The comparison of edge-biomarkers determined in predisease

stage and advanced-disease stage. To illustrate the gene and func-
tion differences between predisease and disease states during

influenza A infection, we also carried out the same analysis
by using the whole time-course gene expression data (see
Supplementary Information). And according the analyzed

result (see Supplementary Information), we still use the genes
involved in edge-biomarkers from Sx subjects and their DNB

score for early diagnosis or predicting influenza infection.

3.2 Common genes of edge-networks as edge-biomarkers

can accurately predict time and outcome of influenza

infection before the disease

(1) The prediction of influenza infection is not only to judge the

final outcome of different subjects but also estimate the time when

the subsequent infection occurs. In aforementioned analysis, the

80 edge-biomarkers with 22 genes from Sx subjects can distin-
guish Sx and Asx groups well, especially when using the gene
expression data on all available time points. However, to use

these new biomarkers to predict influenza infection for early
diagnosis, a key question is if or not these biomarkers can predict

the phenotypes of disease candidates before the appearance of
their disease symptoms. Thus, different from traditional bio-
markers to distinguish disease and normal samples, we have

shown that common genes of edge-networks as edge-biomarkers
can (i) correctly predict the outcome of influenza infection

among healthy adults with live influenza (H3N2/Wisconsin)
before the disease and (ii) also predict the critical time with the

symptom of influenza infection, which can tell us if and when
disease will occur for a specific subject. Using the same criterion
as that in Chen et al. (2012), i.e. Equation (6), we calculated the

DNB score in each time point (time window) during the disease
progression after influenza injection, as shown in Figure 3A.
(2) The accuracy of edge-biomarker on the prediction of final

outcome of virus infection. We used DNB score quantifying edge-
biomarker to predict the subsequent result after virus infecting

on each subject (see Section 2) as shown in Figure 2B. For each

subject, if in any time window, its DNB score is larger than a

given prediction threshold, we consider that this subject is now in

a disease state and will become symptomatic. To study the

threshold robustness of biomarkers, we used AUC to evaluate

the total performance of prediction accuracy based on the DNB

score of the edge-biomarker. We obtained the impressive result

with 0.93 AUC (Fig. 3B) to classify Sx and Asx subjects. From

Figure 3A, clearly, the DNB scores drastically increase for Sx

after virus infection, but not for Asx (except the subject 16). That

means that our edge-biomarkers can detect the relevant critical

transitions during the progression of influenza infection. In par-

ticular, when a subject approaches the critical transition point

(i.e. the time just before the symptom appears), DNB score dras-

tically increases, thereby indicating the imminent influenza infec-

tion or symptom (Sx). Otherwise, for Asx, DNB score is always

small due to non-occurrence of critical transition after the influ-

enza injection. Therefore, edge-biomarkers with the DNB scores

can correctly predict the outcome of influenza infection for each

individual.
(3) The accuracy of edge-biomarker on the prediction of

occurred time of effective virus infection. We investigated whether

edge-biomarker can reflect system state or network change

before the disease occurrence, and we show the DNB score of

the edge-biomarker for each Sx subject (Fig. 4) and each Asx

subject (Supplementary Fig. S4). According to the cutoff of

DNB score for judging the occurrence of the disease during the

progression of influenza infection, clearly we can correctly pre-

dict the symptom for each subject (star label in Fig. 4) before the

influenza infection was diagnosed with standardized symptom

scoring record (circular label in Fig. 4), except one case, i.e. sub-

ject 5, which we failed to predict the outcome earlier than the

clinical diagnosis but we still correctly predict the disease

outcome of this subject. Thus, edge-biomarker can effectively

predict the time of onset influenza infection.

Fig. 4. Prediction performance of influenza subsequent infection time by

DNB score of edge-biomarker. One time window is five time points as

indicted in Figure 2C, e.g. window-2 is the time period of 5–36 h. Each

sub-figure displays the DNB score of the edge-biomarker for each Sx

subject during the progression of the influenza infection. The dotted

mark indicates the predicted time by DNB score cutoff, whereas the

circular mark shows the clinically diagnosed infection time for the cor-

responding subject. Obviously, almost all 9 Sx subjects can be accurately

predicted by DNB score before actual clinic diagnosis, although our

predicted time is a little delayed for subject 5

Fig. 3. Prediction of outcomes after influenza injection by edge-

biomarkers (or DNB scores). (A) The DNB scores of edge-biomarkers

for all subjects during the disease progression (22 genes from the Sx edge-

network) after the influenza injection. The grey curves are DNB scores

for Sx subjects and black ones for Asx subjects. The dotted line is a cutoff

for distinguishing two subject groups. Note that one time window is five

consecutive time points as indicted in Figure 2C, e.g. window-2 is the time

period of 5–36 h. (B) The ROC curve of prediction performance based on

DNB score by only using non-symptom data (i.e. data before the influ-

enza infection symptom appears). Its AUC is about 0.93

857

Prediction and early diagnosis of complex diseases

 at sibcb on June 26, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

)
pre-disease
In order to
pre-disease
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt620/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt620/-/DC1
above
 in order
(
,
., 
., eqn.[
],
.
Materials and Methods
.
.
indeed 
.,
indeed 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt620/-/DC1
cut-off
.,
indeed 
http://bioinformatics.oxfordjournals.org/


(4) The robustness of edge-biomarkers evaluated by cross-valid-

ation. We also repeat edge-network analysis with LOOCV to

assess our edge-biomarkers with DNB scores and their predic-

tion accuracy. The results are inspiring because the marker genes

are significantly stable and AUC of prediction achieves

0.90 (Supplementary Fig. S9A). In all edge-biomarkers obtained

in LOOCV, there are 17 genes (IFI44, IFI44L, GBP1, IFIT2,

IFIT1, IFIT3, MX1, OAS1, OAS2, OAS3, LAP3, HERC5,

PLSCR1, SERPING1, OASL, RSAD2 and ISG15) always

appear, which are all found in our 22-genes edge-biomarkers.

The total number of marker genes induced in LOOCV is 26,

i.e. there are only 4 new genes (LAMP3, RTP4, TNFAIP6,

TNFSF10) found during this cross-validation procedure. We

found that these four genes are selected as biomarkers only

when subject-5 is left out and TNFSF10 is in influenza A path-

way. This fact might indicate that there is significant personal

specificity with subject-5 so that the DNB score cannot predict it

before disease occurs. Besides, we have calculated the F1 values

of LOOCV (Supplementary Fig. S9B), the maximum score is

0.62 when the range of prediction threshold on DNB score is

from 1.4 to 2.08.

3.3 Comparison between edge-biomarkers and

node-biomarkers for predicting influenza infection

Different from previous biomarkers, we found that edge-

biomarkers extracted from the edge-network without normal

(Asx subjects) samples still have the ability to predict the pheno-

types of diseases by exploiting the information of pathogen

dynamical expressions, which can not only identify the influenza

infection outcomes but also detect the actual infection time

points. To compare the effectiveness with the conventional

node-networks, we obtained node or molecular biomarkers by

using the well-known method ARACNE in the same way as our

method.
(1) For each subject in Sx group or Asx group, their gene

expressions are used to infer node-network by ARACNE dir-

ectly. The parameters in ARACNE are set to be their default

values, and the P-value for mutual information threshold is set as

0.0001. Then the edges appearing in at least 7 Sx node-networks

are selected, and their genes are used as node-biomarkers to

compare with our edge-biomarkers.
(2) Similarly, the molecules or genes of node-biomarkers from

Sx group belonging to the dominant group and others (non-

dominant group) are used to study Sx and Asx, respectively.

The time window for correlation calculation is predefined and

the window length is five time points, which are all the same as

our aforementioned DNB score evaluation in edge-biomarker

analysis.
The identified marker genes based on ARACNE have 474

much more than 22 genes, which also include some in our

edge-biomarkers. This fact shows that the conventional node-

network would be hard to narrow down the ranked genes

with pathogen relevance (or has higher false positive) due to

the lack of the information for collective effects of molecules.

Furthermore, these node-biomarkers show significantly less pre-

diction power (AUC¼ 0.67) than our edge-biomarkers (see

Supplementary Fig. S5) when they both use DNB score as a

predictor of influenza infection. In fact, although ARACNE is

an effective approach to reconstruct a gene regulatory network,

it does not consider the dynamical and high-order statistical in-

formation in temporal expression data related to disease devel-

opment. Thus, the genes in node-network from ARACNE

may lack the ability on distinguishing predisease samples. This

comparison validates the effectiveness of edge-biomarkers for

early diagnosis of diseases.

In addition, we have also compared edge-biomarkers with

traditional gene markers selected by student’s t-test on the tem-

poral gene expression data before the sixth time point. The se-

lected genes are significantly differentially expressed from the

control time point, i.e. the first time, for the Sx and Asx subjects,

respectively (P50.01). There are 439 genes that are only signifi-

cantly differentially expressed in Sx subjects. The hierarchical

clustering of these genes shown in Supplementary Figure S6

illustrates no obvious expression patterns between Sx and Asx

subjects. Furthermore, the DNB scores based on this gene group

give a similar prediction performance (AUC¼ 0.64) as that of

ARACNE (see Supplementary Fig. S7), which demonstrates

again the superiority of edge-biomarkers on predicting influenza

infection.

4 DISCUSSION

In contrast to conventional node-network focusing on associ-

ation between nodes (e.g. genes), however, our edge-network

aims at association between node-pairs (e.g. pairs of protein

interactions). With appropriate assumptions, we can show that

a biological system at a molecular level can be exactly modeled

by the equations with first-order and second-order statistics,

where the first-order equations correspond to the traditional mo-

lecular network or node-network, whereas the second-order

equations correspond to the covariance network or edge-

network. Node-network based on the average values of mo-

lecular concentrations is widely used to analyze the biological

behaviors at a specific condition, e.g. a normal state or a disease

state, but it cannot directly be applied to the analysis on the

critical state before the drastic transition due to the requirement

of the second-order statistics information. In contrast, as a com-

plementary part, edge-network is based on covariance informa-

tion among molecules, and thus it can be applied to predict the

critical transition of the system by identifying edge-biomarkers

from time-course (or stage-course) expression profiles. In this

article, we have studied the time-course data of 17 subjects

(healthy adults) with risk of influenza infection, and extracted

the common edge-biomarkers from edge-networks in two groups

of subjects with different clinical outcomes. The results show that

the edge-biomarkers derived from the edge-networks are able

to not only distinguish the Asx and Sx groups but also predict

the outcomes of the symptoms before the clinical diagnosis.

In this study, we only used one dataset to compare with

other method, and thus the validation of this work seems insuf-

ficient. But with the accumulation of temporal expression data,

we will implement more elaborate experiments to evaluate the

effectiveness of our method. In addition, comparing with

the traditional node-network, the size of the edge-network is

much big and thus its analysis may be a computationally challen-

ging task.
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Our edge-network analysis to predict influenza infection is
based on an assumption that subjects with same clinical out-
comes tend to have similar biological responses on a higher-
order network level after virus infection. This assumption ensures

that our model is consistent with the actual clinical diagnosis. We
constructed the edge-network for each adult based on the gene
expression profile before the appearance of influenza symptom,

and validated the prediction ability of edge-biomarkers quanti-
fied by DNB score (Chen et al., 2012; Liu et al., 2012, 2013a).
The analysis results support that high-order statistics and dynam-

ical information of biological data will be effective for mining
pathogen genes closely related to disease occurrence and devel-
opment even without normal control. Note that each edge-net-

work is constructed not by different individuals but by the same
person or species, and in contrast, traditional node-network and
node-biomarkers are identified from groups of different individ-
uals. Edge-network is also significantly different from the existing

network-based methods and biomarkers (Liu et al., 2013a, b)
including DNB, which are still based on node-network.
From practical perspective, our method is attractive because it

provides a powerful tool for disease prediction, which is crucial
for the early treatment and prevention of the patients. The edge-
network analysis does not depend on the specific details of a

disease, and therefore it can be used to analyze other types of
diseases for prevention, early diagnosis and treatment. The pro-
posed method is a general way to represent a stochastic dynam-
ical system, and thus in addition to disease progression, the

proposed method can be used to study other biological processes
in a similar manner. By combining with traditional methods such
as Bayesian inference method, we may directly consider or char-

acterize the stochastic dynamics of the system to detect effective
edge-biomarkers. Also it is necessary to consider imprecise
phenotype factors so as to achieve accurate diagnosis on complex

diseases.
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